775 research outputs found

    Thermodynamic Properties of the SU(2)f_f Chiral Quark-Loop Soliton

    Get PDF
    We consider a chiral one-loop hedgehog soliton of the bosonized SU(2)f_f Nambu & Jona-Lasinio model which is embedded in a hot medium of constituent quarks. Energy and radius of the soliton are determined in self-consistent mean-field approximation. Quasi-classical corrections to the soliton energy are derived by means of the pushing and cranking approaches. The corresponding inertial parameters are evaluated. It is shown that the inertial mass is equivalent to the total internal energy of the soliton. Corrected nucleon and Δ\Delta isobar masses are calculated in dependence on temperature and density of the medium. As a result of the self-consistently determined internal structure of the soliton the scaling between constituent quark mass, soliton mass and radius is noticeably disturbed.Comment: 34 pages, 7 Postscript figures, uses psfig.st

    Two-Dimensional Hydrodynamic Models of Super Star Clusters with a Positive Star Formation Feedback

    Full text link
    Using the hydrodynamic code ZEUS, we perform 2D simulations to determine the fate of the gas ejected by massive stars within super star clusters. It turns out that the outcome depends mainly on the mass and radius of the cluster. In the case of less massive clusters, a hot high velocity (1000\sim 1000 km s1^{-1}) stationary wind develops and the metals injected by supernovae are dispersed to large distances from the cluster. On the other hand, the density of the thermalized ejecta within massive and compact clusters is sufficiently large as to immediately provoke the onset of thermal instabilities. These deplete, particularly in the central densest regions, the pressure and the pressure gradient required to establish a stationary wind, and instead the thermally unstable parcels of gas are rapidly compressed, by a plethora of re-pressurizing shocks, into compact high density condensations. Most of these are unable to leave the cluster volume and thus accumulate to eventually feed further generations of star formation. The simulations cover an important fraction of the parameter-space, which allows us to estimate the fraction of the reinserted gas which accumulates within the cluster and the fraction that leaves the cluster as a function of the cluster mechanical luminosity, the cluster size and heating efficiency.Comment: Accepted for publication in ApJ; 27 pages, 9 figures, 1 tabl

    The fragmentation of expanding shells II: Thickness matters

    Full text link
    We study analytically the development of gravitational instability in an expanding shell having finite thickness. We consider three models for the radial density profile of the shell: (i) an analytic uniform-density model, (ii) a semi-analytic model obtained by numerical solution of the hydrostatic equilibrium equation, and (iii) a 3D hydrodynamic simulation. We show that all three profiles are in close agreement, and this allows us to use the first model to describe fragments in the radial direction of the shell. We then use non-linear equations describing the time-evolution of a uniform oblate spheroid to derive the growth rates of shell fragments having different sizes. This yields a dispersion relation which depends on the shell thickness, and hence on the pressure confining the shell. We compare this dispersion relation with the dispersion relation obtained using the standard thin-shell analysis, and show that, if the confining pressure is low, only large fragments are unstable. On the other hand, if the confining pressure is high, fragments smaller than predicted by the thin-shell analysis become unstable. Finally, we compare the new dispersion relation with the results of 3D hydrodynamic simulations, and show that the two are in good agreement.Comment: 9 pages, 9 figures, accepted by MNRA

    The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM

    Full text link
    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of ΣGAS=10  M/pc2\Sigma_{_{\rm GAS}} = 10 \;{\rm M}_\odot/{\rm pc}^2. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2_2 and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well as for peak and mixed driving the formation of H2_2 is strongly suppressed. Also without self-gravity the H2_2 fraction is significantly lower (\sim 5%). Most of the volume is filled with hot gas (\sim90% within ±\pm2 kpc). Only for random or clustered driving, a vertically expanding warm component of atomic hydrogen indicates a fountain flow. Magnetic fields have little impact on the final disc structure. However, they affect dense gas (n10  cm3n\gtrsim 10\;{\rm cm}^{-3}) and delay H2_2 formation. We highlight that individual chemical species, in particular atomic hydrogen, populate different ISM phases and cannot be accurately accounted for by simple temperature-/density-based phase cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For movies of the simulations and download of selected Flash data see the SILCC website: http://www.astro.uni-koeln.de/silc

    The Carina Flare: What can fragments in the wall tell us?

    Get PDF
    13^{13}CO(J=2--1) and C18^{18}O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability - PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.Comment: 19 pages, 14 figures, accepted by A&

    The SILCC project: III. Regulation of star formation and outflows by stellar winds and supernovae

    Get PDF
    We study the impact of stellar winds and supernovae on the multi-phase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2^2 x ±\pm 5 kpc and a gas surface density of 10 M_{\odot}/pc2^2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters which combine the winds from indi- vidual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-)shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters which have lower average masses (102^2 - 104.3^{4.3} M_{\odot}) and form on shorter timescales (103^{-3} - 10 Myr). In particular we find an anti-correlation of cluster mass and accretion time scale. Without winds the star clusters easily grow to larger masses for ~5 Myr until the first supernova explodes. Overall the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disk (mass loading \gtrsim 1 at 1 kpc) can be launched by thermal gas pressure if more than 50% of the volume near the disc mid-plane can be heated to T > 3x105^5 K. Stellar winds alone cannot create a hot volume-filling phase. The models which are in best agreement with observed star formation rates drive either no outflows or weak outflows.Comment: 23 pages; submitted to MNRA

    Ionized regions in the central arcsecond of NGC 1068. YJHK spatially resolved spectroscopy

    Full text link
    Context. Several bright emission line regions have been observed in the central 100 parsecs of the active galaxy NGC 1068. Aims. We aim to determine the properties and ionization mechanism of three regions of NGC 1068: the nucleus (B) and two clouds located at 0.3" and 0.7" north of it (C and D). Methods. We combined SPHERE (0.95 - 1.65 um) and SINFONI (1.5 - 2.45 um) spectra for the three regions B, C, and D. We compared these spectra to several CLOUDY photoionization models and to the MAPPINGS III Library of Fast Radiative Shock Models. Results. The emission line spectra of the three regions are almost identical to each other and contribute to most of the emission line flux in the nuclear region. The emitting media contain multiple phases, the most luminous of which have temperatures ranging from 104.8 K to 106 K. Central photoionization models can reproduce some features of the spectra, but the fast radiative shock model provides the best fit to the data. Conclusions. The similarity between the three regions indicates that they belong to the same class of objects. Based on our comparisons, we conclude that they are shock regions located where the jet of the active galactic nucleus impacts massive molecular clouds.Comment: A&A, Forthcoming article, accepted for publicatio

    Kinematic clues to the origins of starless HI clouds : dark galaxies or tidal debris?

    Get PDF
    Isolated H i clouds with no optical counterparts are often taken as evidence for galaxy–galaxy interactions, though an alternative hypothesis is that these are primordial ‘dark galaxies’ that have not formed stars. Similarly, certain kinematic features in H i streams are also controversial, sometimes taken as evidence of dark galaxies but also perhaps explicable as the result of harassment. We numerically model the passage of a galaxy through the gravitational field of cluster. The galaxy consists of smoothed particle hydrodynamics particles for the gas and N-bodies for the stars and dark matter, while the cluster includes the gravitational effects of substructure using 400 subhaloes (the effects of the intracluster medium are ignored). We find that harassment can indeed produce long H i streams and these streams can include kinematic features resembling dark galaxy candidates such as VIRGOHI21. We also show that apparent clouds with diameter 100 km s−1 is negligible – making this a very unlikely explanation for the observed clouds in the Virgo cluster with these properties
    corecore